A general approach to the synthesis and detailed characterization of magnetic ferrite nanocubes.

نویسندگان

  • Yaolin Xu
  • Jennifer Sherwood
  • Ying Qin
  • Robert A Holler
  • Yuping Bao
چکیده

A general approach to the synthesis and detailed characterization of magnetic ferrite nanocubes were reported, where the nanocubes were synthesized by the thermal decomposition of metal-oleate complexes following a step-heating method. The doping ions were introduced during the precursor preparation by forming M(2+)/Fe(3+) oleate mixed complex (M(2+) = Fe(2+), Mn(2+), Zn(2+), Cu(2+), Ca(2+), and Mg(2+)). The mechanistic studies showed that the presence of sodium oleate in combination with step-heating was critical for the formation of the cubic shapes for the doped magnetic ferrites. The nanocubes were extensively characterized, including morphology and crytsal structure by advanced transmission electron microscopy, doping level and distribution by energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy, cation distribution within the spinel structures by Fourier transform infrared and Raman spectroscopy, and magnetic properties by alternating gradient magnetometer at room temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of Nanocrystalline Magnetic Pigment via Coordinated Precursors

Nanocrystalline cobalt ferrite as a magnetic black pigment was synthesized via coordinated precursors with a significant decrease of the synthesis temperature using citric acid as a coordinating agent. The structure and properties of the cobalt ferrite powder were characterized by X-ray diffraction (XRD), colorimetric analysis (L*a*b* color parameters), diffuse reflectance spectroscopy and vibr...

متن کامل

SYNTHESIS AND STRUCTURAL, MAGNETIC, AND ELECTROMAGNETIC CHARACTERIZATION OF COBALT FERRITE / REDUCED GRAPHENE OXIDE COMPOSITE

In this research, cobalt ferrite powders (CoFe2O4) and cobalt ferrite/reduced graphene oxide composite (CoFe2O4/RGO) were synthesized by the co-precipitation method. The phase structure, morphology, magnetic properties, and microwave absorption properties of the produced samples were investigated through various techniques. X-ray diffraction test indicated the successful formation of pure CoFe2...

متن کامل

Synthesis, Characterization and Investigation Magnetic and Photovoltaic properties of FeVO4 Nanoparticles

This research reports a facile ultrasonic approach for the synthesis of iron vanadate (FeVO4) nanoparticles with the aid of ammonium metavanadate (NH4VO3) and Fe(NO3)3.9H2O as the starting reagents without adding external surfactant, capping agent or template in an aqueous solution. Furthermore, to examine the solar cell application of as-synthesized iron vanadate (FeVO4) nanoparticles, FTO/TiO...

متن کامل

Synthesis and Characterization of Nickel Zinc Ferrite Nanoparticles

In this research nickel zinc ferrite nanoparticles with composition of Ni1-xZnxFe2O4 (where x=0, 0.3, 0.7, 1) were synthesized by a sol-gel method at 600 °C for 5 hours. The structure of nanoparticles was studied using X-ray diffraction pattern. The lattice parameter of ferrite nanoparticles was calculated and indicates lattice constant of nanoparticl...

متن کامل

Effects of Calcination Temperature on the Synthesis, Chemical Structure, and Magnetic Properties of Nano Crystallites Zinc Ferrite Prepared by Combination of Sol-Gel Auto-Combustion and Ultrasonic Irradiation Techniques

Nanocomposite zinc ferrites were synthesized using glycine-nitrates by sol–gel auto-combustion technique. The influence of calcination temperatures varying from 400 to 900°C on structural and magnetic properties of spinel ZnFe2O4 powders have been investigated. The characterization measurements including X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetomet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 29  شماره 

صفحات  -

تاریخ انتشار 2015